skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Engle, Keary M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2026
  2. A stereodivergent, W-catalyzed alkene isomerization is reported, leading to eitherE- orZ-β,γ-unsaturated carbonyl compounds based on the ligand environment around the metal. 
    more » « less
    Free, publicly-accessible full text available January 29, 2026
  3. Free, publicly-accessible full text available March 7, 2026
  4. Abstract A three‐component coupling approach toward structurally complex dialkylsulfides is described via the nickel‐catalyzed 1,2‐carbosulfenylation of unactivated alkenes with organoboron nucleophiles and alkylsulfenamide (N−S) electrophiles. Efficient catalytic turnover is facilitated using a tailored N−S electrophile containing anN‐methyl methanesulfonamide leaving group, allowing catalyst loadings as low as 1 mol %. Regioselectivity is controlled by a collection of monodentate, weakly coordinating native directing groups, including sulfonamides, amides, sulfinamides, phosphoramides, and carbamates. Key to the development of this transformation is the identification of quinones as a family of hemilabile and redox‐active ligands that tune the steric and electronic properties of the metal throughout the catalytic cycle. Density functional theory (DFT) results show that the duroquinone (DQ) ligand adopts different coordination modes in different stages of the Ni‐catalyzed 1,2‐carbosulfenylation‐binding as an η6capping ligand to stabilize the precatalyst/resting state and prevent catalyst decomposition, binding as an X‐type redox‐active durosemiquinone radical anion to promote alkene migratory insertion with a less distorted square planar Ni(II) center, and binding as an L‐type ligand to promote N−S oxidative addition at a relatively more electron‐rich Ni(I) center. 
    more » « less
    Free, publicly-accessible full text available December 20, 2025
  5. Free, publicly-accessible full text available November 1, 2025
  6. Abstract Catalytic enantioselective 1,2-dicarbofunctionalization (1,2-DCF) of alkenes is a powerful transformation of growing importance in organic synthesis for constructing chiral building blocks, bioactive molecules, and agrochemicals. Both in a two- and three-component context, this family of reactions generates densely functionalized, structurally complex products in a single step. Across several distinct mechanistic pathways at play in these transformations with nickel or palladium catalysts, stereocontrol can be obtained through tailored chiral ligands. In this Review we discuss the various strategies, mechanisms, and catalysts that have been applied to achieve enantioinduction in alkene 1,2-DCF. 1 Introduction 2 Two-Component Enantioselective 1,2-DCF via Migratory Insertion 3 Two-Component Enantioselective 1,2-DCF via Radical Capture 4 Three-Component Enantioselective 1,2-DCF via Radical Capture 5 Three-Component Enantioselective 1,2-DCF via Migratory Insertion 6 Miscellaneous Mechanisms 7 Conclusion 
    more » « less